算法-模拟

算法-模拟

0x00 什么是模拟

​ 模拟即对于一个问题,人类是如何处理的,那我们算法就一样的流程处理

0x01 题目选解

机器翻译

​ 题目背景

小晨的电脑上安装了一个机器翻译软件,他经常用这个软件来翻译英语文章。

题目描述

这个翻译软件的原理很简单,它只是从头到尾,依次将每个英文单词用对应的中文含义来替换。对于每个英文单词,软件会先在内存中查找这个单词的中文含义,如果内存中有,软件就会用它进行翻译;如果内存中没有,软件就会在外存中的词典内查找,查出单词的中文含义然后翻译,并将这个单词和译义放入内存,以备后续的查找和翻译。

假设内存中有MM个单元,每单元能存放一个单词和译义。每当软件将一个新单词存入内存前,如果当前内存中已存入的单词数不超过M-1M−1,软件会将新单词存入一个未使用的内存单元;若内存中已存入MM个单词,软件会清空最早进入内存的那个单词,腾出单元来,存放新单词。

假设一篇英语文章的长度为NN个单词。给定这篇待译文章,翻译软件需要去外存查找多少次词典?假设在翻译开始前,内存中没有任何单词。

​ 这个题思路非常简单,按照其描述来实现算法即可,简单的模拟,一个队列就行

均分纸牌

题目描述

有N堆纸牌,编号分别为 1,2,…,N。每堆上有若干张,但纸牌总数必为N的倍数。可以在任一堆上取若干张纸牌,然后移动。

移牌规则为:在编号为1堆上取的纸牌,只能移到编号为2的堆上;在编号为N的堆上取的纸牌,只能移到编号为N-1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如N=4,4堆纸牌数分别为:

①9②8③17④6

移动3次可达到目的:

从 ③ 取4张牌放到 ④ (9,8,13,10)-> 从 ③ 取3张牌放到 ②(9,11,10,10)-> 从 ② 取1张牌放到①(10,10,10,10)。

​ 考虑我们人是如何处理这种情况的,很简单,我们从左往右一堆一堆的配平(先计算出每堆平均数量),比平均多就往右移动,比平均少就把右边拿过来,相等就不处理。